

Establishing reference intervals for serum ferritin and vitamin B₁₂ using a modified Hoffmann's approach

¹Nutristasis Unit, Viapath, St. Thomas' Hospital, London, UK; ²Faculty of Life Sciences & Medicine, King's College London, UK; ³Departments of Clinical Biochemistry and Metabolic Medicine, University Hospital Lewisham and Guy's and St. Thomas' NHS Foundation Trust, London, UK ⁴Division of Women's Health, School of Medicine, King's College London, UK; ⁵Laboratory Corporation of America Holdings, Elon, NC, USA

Introduction

Age and/or sex specific population-based reference intervals (RIs) are rarely available or difficult to establish in Clinical Laboratories. With an increased focus on the betweenmethod standardization and harmonization of test results, the development of universal RIs for standardized and harmonized assays may help laboratories to improve patient care. Both serum ferritin and serum vitamin B_{12} (B_{12}) concentrations vary with age and gender, yet unified RIs are often applied. Both lower and upper limits for these markers are clinically important, since low values suggest deficiency leading to anaemia, and high values may reflect iron overloading/acute phase (ferritin) or abnormalities in vitamin B_{12} binding proteins e.g. as seen with some cancers (B_{12}) . Therefore, accurate and subgroup-specific RIs should be applied.

Methods

All ferritin results processed between Aug 2014-Jul 2015 and B_{12} processed between Jan-June 2013 on $i2000_{SR}$ (Abbott Diagnostics) from a population served by Guy's and St. Thomas' Hospitals in London, UK were used to calculate RIs. Data was partitioned in accordance with literature based knowledge about sex/age related differences in these markers.

Results

Size of data:

The RIs with percentage of values below and above the cutoffs are shown in Table 1. Because of low sample numbers, separate RIs for age group 0-12 months were not calculated.

Number of outliers:	258
Maximum Error Threshold:	0.465
Maximum Error:	0.464
% of data in linear range:	90.487
Start cut point:	2.702
End cut point:	93.189
RI:	[9.059, 13.91]
Regression:	y = (0.051)x +
	(8.932)
Boxcox:	c=0, λ=0.2
inversed RI:	[175.789, 773.72]
CI:	[153.958, 200.028],
	[701.429, 851.851]
% of data in calculated RI:	83.079
% of data above the upper limit	12.786
of calculated RI:	
% of data below the lower limit	4.135
of calculated RI:	
Mean of all data:	521.011
Median of all data:	390
SD of all data:	482.695
Mean (linear region):	399.597
Median (linear region):	370
SD (linear region):	156.253

5514

Table 1. An example of a representative, selected report (total B_{12} , age group 60+ yrs)

Aim

To establish RIs for ferritin and B_{12} using a modified Hoffmann's approach.¹

A modified Hoffmann's method

In 1963, Hoffmann described a simple, indirect method of calculating RIs using existing patient data from a laboratory database, named 'probability paper method'.² Later, the first computerized software based on Hoffmann's approach was developed.³ In brief, Chauvenet's criteria were used for the detection of outliers (Figure 1). Following the outliers removal, the cumulative frequency of each test result was determined. Values from the linear portion of the cumulative frequency graph were used for computing the best fitting linear regression equation, $\gamma_i = a^*\chi + \beta + \varepsilon_i$ (Figure 3). The RIs were then determined from the linear regression equation following extrapolation of the preceding curve. RI was calculated (for x=2.5% and 97.5%): **RI**_{min} = $a*2.5+\beta_{r}$ **RI**_{max} = $a*97.5+\beta$. When the source data distribution is significantly skewed, a Box-Cox transformation may be applied (Figure 2), with back transformation after the linear portion is calculated from the transformed data. In this work a fully computerised and validated method, with new functions and algorithms added was used.

Agata Sobczyńska-Malefora^{1,2}, Martin A Crook³, Dominic J Harrington^{1,4}, Alexander Katayev⁵

Ferritin				Total B ₁₂							
Partition group; gender/age	Data size	RIs (ng/mL)	% below lower limit	% above upper limit	Partition group by age	Data size	RIs (ng/L)	% below lower limit	% above upper limit		
M/1-5 yrs	845	9 - 70	5.2	30.0	0-19 yrs	720	224 - 1001	5.7	10.8		
F/1-5 yrs	488	10 - 73	3.3	32.2	6-19 yrs	624	218 - 878	5.6	10.6		
M/6-11 yrs	899	14 - 85	3.1	28.5	20-59 yrs	11641	194 - 829	4.8	10.1		
F/6-11 yrs	802	13 - 74	3.5	38.6	60+ yrs	5514	176 - 774	4.1	12.8		
M/12-19 yrs	1122	17 - 143	3.5	31.7	Discussion: The RIs for serum ferritir						
F/12-19 yrs	1760	7 - 75	3.7	22.9	and B_{12} , calculated using a modified						
M/20-55 yrs	9767	34 - 314	6.8	15.4	Hoffmann's approach are consistent with RIs established using harmonized						
F/20-55 yrs	25823	9 - 102	5.7	13.9							
M/56+ yrs	9360	25 - 503	7.6	12.0	methods and may serve as universal RIs for other laboratories using the						
F/56+ yrs	11575	19 - 262	6.8	15.3	same methodology. They incorporate						

Table 2. Age and/or sex related RIs for serum ferritin and total B₁₂

Figure 1. An example of a dot-plot

Figure 2. An example of a dot-plot (no outliers) after Box-Cox transformation (total B₁₂, age group 60+ yrs)

References:

1. Katayev A, Fleming JK, Luo D, Fisher AH, Sharp TM. Reference intervals data mining: no longer a probability paper method. Am.J.Clin.Pathol. 2015;143:134-42.

2. Hoffmann RG. Statistics in the practice of medicine. JAMA 1963;**185**:864-73.

Figure 3. An example of cumulative frequencies (dots) and regression line (total B₁₂, age group 60+ yrs)

3. Katayev A, Balciza C, Seccombe DW. Establishing reference intervals for clinical laboratory test results: is there a better way? Am.J.Clin.Pathol. 2010;133:180-6.

variations related to gender, age, method and the population being tested. The variations in upper limits for ferritin are of particular interest in view of iron overloading and deserve further investigations. Application of these RIs can assist with a better assessment of iron and vitamin B₁₂ status.